Special Publication on Authenticated Encryption

Meltem Sönmez Turan

SHA-3 2014 Workshop August 22, 2014

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Outline

- Authenticated Encryption (AE)
- NIST-approved AE primitives
- Permutation-based AE modes
- NIST's plan and timeline
- Call for feedback

Authenticated Encryption

An Authenticated Encryption (AE) algorithm provides *message* integrity **AND** confidentiality.

Approach I:

Authenticate using a MAC (e.g., HMAC) and encrypt using a block cipher (e.g., AES-CBC).

Approach II:

Use a dedicated AE algorithm.

Generic Structure

NIST Approved AE Algorithms

Based on block ciphers

- SP 800-38C specifies CCM mode of AES:
 - Combination of counter mode for privacy and cipher block chaining technique for authentication
- SP 800-38D specifies GCM (Galois/Counter Mode) of AES:
 - Combination of counter mode for privacy and universal hashing over binary Galois Field for authentication.
- SP 800-38F specifies Key Wrapping modes:
 - KW/KWP using AES
 - TKW using Triple DES

NIST's Plan

• In 2012, Keccak is selected as SHA-3, due to security/performance advantages and extra features, such as its built-in AE mode.

"... NIST may consider standardizing additional constructions based on the KECCAK permutation, such as an authenticated-encryption mode, in the future."

> - from "NISTIR 7896 - Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition" (Nov, 2012):

NIST's Plan (cont.)

<u>Underlying Permutation:</u>

- Draft FIPS 202 SHA-3 Standard specifies the family of the KECCAK-f [b] permutations with width b= {25, 50, 100, 200, 400, 800, 1600}.
- KECCAK-f [1600] (with 24 rounds) is well-analyzed and is believed to have a high security margin.
- Single primitive for hashing and AE

NIST's Plan (cont.)

<u>Underlying Permutation:</u>

- Draft FIPS 202 SHA-3 Standard specifies the family of the KECCAK-f [b] permutations with width b= {25, 50, 100, 200, 400, 800, 1600}.
- KECCAK-f [1600] (with 24 rounds) is well-analyzed and is believed to have a high security margin.
- Single primitive for hashing and AE

AE Mode:

- Various permutation-based AE modes, including some of the CAESAR submissions (e.g., DUPLEXWRAP, MONKEYWRAP, PPAE, APE). However, we do not to want to influence the CAESAR competition.
- Initial plan is to approve the AE mode SPONGEWRAP.

SPONGEWRAP

Proposed by the KECCAK team at SAC'11

SPONGEWRAP

Proposed by the KECCAK team at SAC'11

NIST plans to

- support 128- and 256- bit security levels, by using Capacity c = 2 x {security level},
- use multi-rate padding,
- support intermediate tags.

TIMELINE: Draft *Special Publication* for Authenticated Encryption – Q4 2014 for Public Comments

Q1) Based on the security proof of SPONGEWRAP, should we consider using lower capacities, i.e. $c = |K| + \{\text{max. online data complexity}\}$? Can we assume maximum online data complexity is $\leq 2^{96}$?

Q1) Based on the security proof of SPONGEWRAP, should we consider using lower capacities, i.e. $c = |K| + \{max. online data complexity\}$? Can we assume maximum online data complexity is $\leq 2^{96}$?

Q2) What should be the intermediate and final tag sizes? How frequent should the intermediate tags be given as output?

- Q1) Based on the security proof of SPONGEWRAP, should we consider using lower capacities, i.e. $c = |K| + \{max. online data complexity\}$? Can we assume maximum online data complexity is $\leq 2^{96}$?
- Q2) What should be the intermediate and final tag sizes? How frequent should the intermediate tags be given as output?
- Q3) DUPLEXWRAP is an improved version of SPONGEWRAP. Should we consider DUPLEXWRAP?

- Q1) Based on the security proof of SPONGEWRAP, should we consider using lower capacities, i.e. $c = |K| + \{max. online data complexity\}$? Can we assume maximum online data complexity is $\leq 2^{96}$?
- Q2) What should be the intermediate and final tag sizes? How frequent should the intermediate tags be given as output?
- Q3) DUPLEXWRAP is an improved version of SPONGEWRAP. Should we consider DUPLEXWRAP?
- Q4) Are there any other issues we need to consider?

References

- Draft FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, 2014.
- NISTIR 7896: Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition, 2012.
- G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
 <u>Duplexing the sponge: single-pass authenticated encryption and other applications</u>,
 Selected Areas in Cryptography (SAC), 2011 (also in
 <u>Second SHA-3 Candidate Conference</u>, 2010)
- CAESAR Competition: http://competitions.cr.yp.to/caesar.html
- G. Bertoni, J. Daemen, M. Peeters, G. Van Assche:
 <u>Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications</u>. Selected Areas in Cryptography 2011: 320-337

Special Publication on Authenticated Encryption

QUESTIONS?

meltem.turan@nist.gov

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce